Namespace ManagedCuda.CudaDNN
Classes
ActivationDescriptor
ConvolutionDescriptor
An opaque structure holding the description of a convolution operation.
CTCLossDescriptor
CudaDNNContext
An opaque structure holding the cuDNN library context.
The cuDNN library context must be created using cudnnCreate() and the returned handle must be passed to all subsequent library function calls. The context should be destroyed at the end using cudnnDestroy(). The context is associated with only one GPU device, the current device at the time of the call to cudnnCreate(). However multiple contexts can be created on the same GPU device.
CudaDNNException
An CudaDNNException is thrown, if any wrapped call to the cudnn-library does not return Success.
CudaDNNNativeMethods
DropoutDescriptor
An opaque structure holding the description of a generic n-D dataset.
FilterDescriptor
An opaque structure holding the description of a filter dataset.
LRNDescriptor
OpTensorDescriptor
An opaque structure holding the description of a generic n-D dataset.
PersistentRNNPlan
PersistentRNNPlan is a pointer to an opaque structure holding a plan to execute a dynamic persistent RNN. cudnnCreatePersistentRNNPlan() is used to create and initialize one instance.
PoolingDescriptor
An opaque structure holding the description of a pooling operation.
ReduceTensorDescriptor
ReduceTensorDescriptor is a pointer to an opaque structure holding the description of a tensor reduction operation, used as a parameter to cudnnReduceTensor(). cudnnCreateReduceTensorDescriptor() is used to create one instance, and cudnnSetReduceTensorDescriptor() must be used to initialize this instance.
RNNDescriptor
SpatialTransformerDescriptor
An opaque structure holding the description of a generic n-D dataset.
TensorDescriptor
An opaque structure holding the description of a generic n-D dataset.
Structs
BNConstants
Constant values for BN
cudnnActivationDescriptor
cudnnActivationDescriptor is a pointer to an opaque structure holding the description of a activation operation.
cudnnConvolutionBwdDataAlgoPerf
cudnnConvolutionBwdDataAlgoPerf is a structure containing performance results returned by cudnnFindConvolutionBackwardDataAlgorithm().
cudnnConvolutionBwdFilterAlgoPerf
cudnnConvolutionBwdFilterAlgoPerf is a structure containing performance results returned by cudnnFindConvolutionBackwardFilterAlgorithm().
cudnnConvolutionDescriptor
cudnnConvolutionDescriptor is a pointer to an opaque structure holding the description of a convolution operation.
cudnnConvolutionFwdAlgoPerf
cudnnConvolutionFwdAlgoPerf is a structure containing performance results returned by cudnnFindConvolutionForwardAlgorithm().
cudnnCTCLossDescriptor
cudnnDropoutDescriptor
cudnnDropoutDescriptor_t is a pointer to an opaque structure holding the description of a dropout operation. cudnnCreateDropoutDescriptor() is used to create one instance, cudnnSetDropoutDescriptor() is be used to initialize this instance, cudnnDestroyDropoutDescriptor() is be used to destroy this instance.
cudnnFilterDescriptor
cudnnFilterDescriptor is a pointer to an opaque structure holding the description of a filter dataset.
cudnnHandle
cudnnHandle is a pointer to an opaque structure holding the cuDNN library context.
The cuDNN library context must be created using cudnnCreate() and the returned handle must be passed to all subsequent library function calls. The context should be destroyed at the end using cudnnDestroy(). The context is associated with only one GPU device, the current device at the time of the call to cudnnCreate(). However multiple contexts can be created on the same GPU device.
cudnnLRNDescriptor
cudnnLRNDescriptor is a pointer to an opaque structure holding the description of a local response normalization operation.
cudnnOpTensorDescriptor
cudnnOpTensorDescriptor is a pointer to an opaque structure holding the description of a tensor operation, used as a parameter to cudnnOpTensor(). cudnnCreateOpTensorDescriptor() is used to create one instance, and cudnnSetOpTensorDescriptor() must be used to initialize this instance.
cudnnPersistentRNNPlan
cudnnPersistentRNNPlan_t is a pointer to an opaque structure holding a plan to execute a dynamic persistent RNN.cudnnCreatePersistentRNNPlan() is used to create and initialize one instance.
cudnnPoolingDescriptor
cudnnPoolingDescriptor is a pointer to an opaque structure holding the description of a pooling operation.
cudnnReduceTensorDescriptor
cudnnReduceTensorDescriptor_t is a pointer to an opaque structure holding the description of a tensor reduction operation, used as a parameter to cudnnReduceTensor(). cudnnCreateReduceTensorDescriptor() is used to create one instance, and cudnnSetReduceTensorDescriptor() must be used to initialize this instance.
cudnnRNNDescriptor
cudnnRNNDescriptor_t is a pointer to an opaque structure holding the description of an RNN operation. cudnnCreateRNNDescriptor() is used to create one instance, and cudnnSetRNNDescriptor() must be used to initialize this instance.
cudnnRuntimeTag
Forward definition in this version only
cudnnSpatialTransformerDescriptor
cudnnSpatialTransformerDescriptor_t is a pointer to an opaque structure holding the description of a spatial transformation operation. cudnnCreateSpatialTransformerDescriptor() is used to create one instance, cudnnSetSpatialTransformerNdDescriptor() is used to initialize this instance, cudnnDestroySpatialTransformerDescriptor() is used to destroy this instance.
cudnnTensorDescriptor
cudnnCreateTensorDescriptor is a pointer to an opaque structure holding the description of a generic n-D dataset.
LRNConstants
Constants for LRN, #define in cudnn.h
Enums
cudnnActivationMode
cudnnActivationMode is an enumerated type used to select the neuron activation function used in cudnnActivationForward() and cudnnActivationBackward().
cudnnAddMode
cudnnAddMode is an enumerated type used by cudnnAddTensor() to specify how a bias tensor is added to an input/output tensor.
cudnnBatchNormMode
cudnnBatchNormMode is an enumerated type used to specify the mode of operation in cudnnBatchNormalizationForwardInference(), cudnnBatchNormalizationForwardTraining(), cudnnBatchNormalizationBackward() and cudnnDeriveBNTensorDescriptor() routines.
cudnnConvolutionBwdDataAlgo
cudnnConvolutionBwdDataAlgo is an enumerated type that exposes the different algorithms available to execute the backward data convolution operation.
cudnnConvolutionBwdDataPreference
cudnnConvolutionBwdDataPreference is an enumerated type used by cudnnGetConvolutionBackwardDataAlgorithm() to help the choice of the algorithm used for the backward data convolution.
cudnnConvolutionBwdFilterAlgo
cudnnConvolutionBwdFilterAlgo is an enumerated type that exposes the different algorithms available to execute the backward filter convolution operation.
cudnnConvolutionBwdFilterPreference
cudnnConvolutionBwdFilterPreference is an enumerated type used by cudnnGetConvolutionBackwardFilterAlgorithm() to help the choice of the algorithm used for the backward filter convolution.
cudnnConvolutionFwdAlgo
cudnnConvolutionFwdAlgo is an enumerated type that exposes the different algorithms available to execute the forward convolution operation.
cudnnConvolutionFwdPreference
cudnnConvolutionFwdPreference is an enumerated type used by cudnnGetConvolutionForwardAlgorithm() to help the choice of the algorithm used for the forward convolution.
cudnnConvolutionMode
cudnnConvolutionMode is an enumerated type used by cudnnSetConvolutionDescriptor() to configure a convolution descriptor.
cudnnCTCLossAlgo
cudnnDataType
cudnnDataType is an enumerated type indicating the data type to which a tensor descriptor or filter descriptor refers.
cudnnDeterminism
cudnnDeterminism_t is an enumerated type used to indicate if the computed results are deterministic(reproducible). See section 2.5 (Reproducibility) for more details on determinism.
cudnnDirectionMode
cudnnDirectionMode_t is an enumerated type used to specify the recurrence pattern in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.
cudnnDivNormMode
cudnnDivNormMode is an enumerated type used to specify the mode of operation in cudnnDivisiveNormalizationForward() and cudnnDivisiveNormalizationBackward().
cudnnErrQueryMode
cudnnIndicesType
cudnnIndicesType_t is an enumerated type used to indicate the data type for the indices to be computed by the cudnnReduceTensor() routine. This enumerated type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.
cudnnLRNMode
cudnnLRNMode is an enumerated type used to specify the mode of operation in cudnnLRNCrossChannelForward() and cudnnLRNCrossChannelBackward().
cudnnMathType
CUDNN math type
cudnnNanPropagation
cudnnNanPropagation is an enumerated type for the NanPropagation flag.
cudnnOpTensorOp
cudnnOpTensorOp is an enumerated type used to indicate the tensor operation to be used by the cudnnOpTensor() routine. This enumerated type is used as a field for the cudnnOpTensorDescriptor descriptor.
cudnnPoolingMode
cudnnPoolingMode is an enumerated type passed to cudnnSetPoolingDescriptor() to select the pooling method to be used by cudnnPoolingForward() and cudnnPoolingBackward().
cudnnReduceTensorIndices
cudnnReduceTensorIndices_t is an enumerated type used to indicate whether indices are to be computed by the cudnnReduceTensor() routine.This enumerated type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.
cudnnReduceTensorOp
cudnnReduceTensorOp is an enumerated type used to indicate the tensor operation to be used by the cudnnReduceTensor() routine.This enumerated type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.
cudnnRNNAlgo
cudnnRNNAlgo_t is an enumerated type used to specify the algorithm used in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.
cudnnRNNInputMode
cudnnRNNInputMode_t is an enumerated type used to specify the behavior of the first layer in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.
cudnnRNNMode
cudnnRNNMode_t is an enumerated type used to specify the type of network used in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.
cudnnSamplerType
cudnnSamplerType_t is an enumerated type passed to cudnnSetSpatialTransformerNdDescriptor() to select the sampler type to be used by cudnnSpatialTfSamplerForward() and cudnnSpatialTfSamplerBackward().
cudnnSoftmaxAlgorithm
cudnnSoftmaxAlgorithm is used to select an implementation of the softmax function used in cudnnSoftmaxForward() and cudnnSoftmaxBackward().
cudnnSoftmaxMode
cudnnSoftmaxMode is used to select over which data the cudnnSoftmaxForward() and cudnnSoftmaxBackward() are computing their results.
cudnnStatus
CUDNN return codes
cudnnTensorFormat
cudnnTensorFormat is an enumerated type used by cudnnSetTensor4dDescriptor() to create a tensor with a pre-defined layout.